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Abstract

In this article, it is shown that for the standard symplectic form on the space of compactly supported
sections of a symplectic fibre bundle, there is no locally-finite Borel measure which is preserved by
the Hamiltonian flows of even a quite restricted set of functions on this space. As this means that some
of the operators arising in geometric quantization associated to classical observables would not be
Hermitean, the result suggests that one should consider quotients by gauge groups as classical phase
spaces to avoid this problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and statement of the results

One of the basic features of Hamiltonian flows on finite-dimensional symplectic man-
ifolds is that they preserve the symplectic formnand hence the natural volume form
wAwA - Aw. Now one could try to obtain a similar result on the phase space of a field
theory which is often a Frechet manifold of sections of a fibre bundle. Sometimes this fibre
bundle is a symplectic fibre bundle, e.g. in the case that one has a Cauchy correspondence
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of first order, i.e. a Frechet diffeomorphism between the space of initial values up to the
first derivatives and the space of classical solutions. Then one can construct an associated
symplectic form on the spad&(r) of sections of the symplectic fibre bundte(which is

defined below) and ask whether there is a nonzero locally finite Borel measii(e othat

is preserved by the group of Hamiltonian flows B¢r). We will show that the answer is

no. This implies that in this case, the operators corresponding to quantum observables in
geometric quantization are not Hermitean.

We will first describe shortly the framework of geometric quantization. Details can be
found in[9].

Geometric quantization (a good overview of which is provided by the books of Wood-
house[14] and Sniatycki13]) is basically a replacement of the abstract Hilbert space of
some quantum theory by the space of smooth sections of a complex line bondlethe
space ['(r)) of classical solutions which is in general a Frechet manifold of sections of a
fibre bundler : E — M. Here we assume for later use tiddtis equipped with a volume
form dvol,,. The Hilbert space operators are then replaced by some linear Hermitean first
order differential operators if(/). Thus on the level of observables, geometric quantization
is a mapping:

Q:C*(I(m).R) > § — EndC(), Q(NW) = —ihVx, ¥ + f¥

wherel is a Hermitean complex line bundle dr) with a Hermitean connectiovi whose
curvature is a (weakly) symplectic two-forhm 12 defining Hamiltonian vector field¥ f

for some functiongby 22(X , -) = df(-), andS is the subset of all functions with a Hamil-
tonian vector field (thus is closed under the Poisson bracket). By BHf)) we mean
the set of linear operators acting B(Y). The operators obtained are first order differential
operators, i.e. they are not only elements of Eif)j, but also elements of Engl(), where
jl1 : JH — T (n) is the first jet bundle of. A condition ensuring the existence of the line
bundle above is given by the following theorem (for the proofLA]).

Theorem 1. Let M be a (possibly infinite-dimensional Frechet) manifold carrying a
(weakly) symplectic form §2. Then there is a Hermitean line bundle with a connection of
curvature =182 if and only if the cohomology class of $2 in H3(M, R) lies in H3(M, Z).

We will call a manifoldprequantizable if it satisfies this condition.
The mapD satisfies Dirac’s famous axiom system for correspondences between classical
and quantum observablg8]):

1. The mapf — Q(f) is R-linear,

Forf constant,Q( f) is the corresponding multiplication operator,

3. The mapQ is an algebra homomorphism, more precisely, the following diagram com-
mutes:

N
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Sx8 D
o| e
End(T(1)) x End(C(1)) —2L Bra(rq))
where{-, -} is the Poisson bracket with respect to the symplectic f@;rand [, -] means
the commutator of linear operators.

In addition, we need a measureon the classical phase space for which all quantum
operators are Hermitean with respect to th&norm if restricted to smooth square-
integrable sections df(as in genergl need not to be finite). Recall that in the light of the
Kopenhagen interpretation Hermiticity is important because only in that case all expectation
values are real. Now, we will see that there is no such measure. This will be done in
Proposition 3

Let us introduce some non-standard notation. /Fer oo, let ["() denote the space
of all n times continuously differentiable sections of the fibre bundleE — M, i.e.

["(7) :={y € C"(M, E) : w o y = 1)}. LetI"*(r) be the corresponding spaces of sections
of compact support which in the case of a fibre bundle means that the section coincides
with a fixed reference section outside a compact sejfix (), then:

() = {s € I"(7)|3 compaciC C M with s|y\c = yolm\c)-

The space$ () andI'%(xr) can be equipped with the metric of uniform convergence on
compact subspaces, i.e.

s, 72) = 3 min . maxtdo(a) ~ 7o) @

neN

for anincreasing sequenfg of compactsetswith), K, = M, wheredyis the Riemannian
distance (with respect to an arbitrary Riemannian metri€)in the submanifoldr—1(x).
This generates thempact-open topology T onT'9(rr) a subbasis of which is formed by alll
setsC, 0) :={y € I'(%) : y(C) C O} of sections that map a fixed compact€et M into

a fixed open set i, analogously for spaces of higher differentiability (note that although
this metric and topology is well-defined for general manifaldsI™ () will be a Frechet
manifold if and only if M is compact!). Set, := o(r), where for a family of subset&

the termo(K) means the smallestalgebra containing’. By a Borel measure we mean a
measure ol ;.

Finally, note thato, = o({prymlm € M}) = {prim)(B)lm € M, B € B(m~1({m}))},
wherepriy) := ev,, : T(m) — 7~ 1({m}), the evaluation map gt andB(z~1({m})) is the
Borel-v-algebra ofr~1({m}).

Thesymplectic form used here is quite common in geometric quantization of field theories
and goes probably back to Chernoff and Marsd2h [10], [4] for the case of atrivial bundle,
[14] and[9] for an overview).

A crucial tool of the construction is the identification of a tangent vektospectively
the value of a vector fiel#f on I'**+1(xr) at a fixed sectiony with a vector fieldulong v, i.e.
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a section ofy*TVE:

T, T ) - TROATYE), VI(p) = Lvev,
or equivalently,

Vly o p > 3(n(p)),

wherep € N, y; a curve representing(y). This means, we fix a point € M and note
the direction in which it is moved infinitesimally by the family of maps If we start
with a tangent vecto# at I'*(r) tangent to the submanifolb*() of compactly sup-
ported sections, thefﬁ’|y has also compact support becall@pe[_lyl] y; has compact
support.

The definition of the symplectic form ofl(x) is relatively simple. To everyy, 0)-
tensor fieldd on E we can associate a(0)-tensor fieldd e T'((T*M)®?) onT'1(x) by the
prescription:

AV V)0 i= [ A T dvoly
M

where each7i” is the corresponding vector field alopg Then, by means of an arbitrary
auxiliary Riemannian metrig on the total spaceg, to every {, g)-tensor fieldd on £ we
can associate a( g)-tensor fieldA on I'l(r) by the prescription

BAWL - V) Vpr1® - @ Vpr) ()
M

This construction shares many good properties such as naturality under isometric embed-
dings (for details cf[9]). Moreover, it induces a chain map as follows:

Theorem 2 ([12],[9]). The map™: A*(E) — A*(T'(n)) is a chain map, i.e.do™ =" o d.
Moreover the kernel of " are exactly the forms which are zero along the fibres of 7.

Now we assumer to be a symplectic fibre bundle, where the fibre manifold carries a
symplectic formw smoothly depending on the base pointvh ThenT'l(x) is equipped
with the two-forme which assigns to any two tangent vectéfsY at a sectiory (with
X, Y the associated vector fields alopgthe number:

(X, Y):=a(X,Y) = /M (X, Y)dvoly, 2)

and an almost immediate consequence from the theorem abovegzithatweakly) sym-
plectic form on'(r). For further details of the constructions aboveg@f. This procedure
is motivated by the fact that for a field theory on a bundteA — N over a globally hy-
perbolic Lorentzian manifold/, one can often find a Cauchy correspondence of first order,
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i.e. a Frechet diffeomorphism between the classical solutions and the values of the field up
to first order of derivatives on a Cauchy surfa¢avith normal vector field, i.e. classical
solutions can be identified with sections of the bundle v*dr : TA — M. OftenA car-
ries a bilinear form by whicifA can be identified witlT™* A, hence we have sections of a
symplectic fibre bundle.

Now we can state the results of this article:

Proposition 3. Let w: E — M be a symplectic fibre bundle. We equip T () with the
weakly symplectic structure $2 defined by EQ. (2). We suppose (I'"* (), §2) to be prequan-
tizable. Then there is no nonzero locally finite Borel measure ju on I'“(n), 1<k < oo as
subset of T (1), 0 < [ < k such that all operators Q(f), where f is a compactly supported
function on E, are Hermitean.

The proposition will be proved as corollary of the following proposition:

Proposition 4. Let 7 : E — M be a symplectic fibre bundle. We equip T () with the
weakly symplectic structure defined by EQ. (2). There is no nonzero locally finite Borel
measure . on T¥ (1) as subset of T (1), | < k < oo which is invariant under the Hamiltonian
flows of its smooth L?-functions of the form 3‘, where fis a compactly supported smooth
function on E.

2. Proof of the propositions

The strategy of the proof is the following: we first pick a trivial neighborhabaf the
fibre bundle and consider the induced measure on sections over this neighborhood which we
consider in a trivialization adjusted to the symplectic structure in an open set—1(U)
(which then can be understood &stimes a subset of Euclideak?* with its standard
symplectic form) so that in this trivializatioh! (7| ) = CX(U, V). If we try to construct a
measure o€ (U, V) the first idea would be to take an image measure under the canonical
embeddingP : V< C1(U, V) whose image is the set of point maps which we denote by
P. On the elements of the subbasis it takes the fort@, O) = £(0) where L denotes
the Lebesgue volume i, and for every elementj, O) of the subbasis of the compact-
open topology defined above. Then we show that in this trivialization the measure would
have to be an element of(P). But if we change locally the trivialization to get another
adjusted trivialization, we get another m&pand another measure. This produces the
contradiction.

Without restriction of generality we can consider the dase0, k = co. This is because
we have continuous embeddingsId{r) — I'O() such that for every measure o¥(r)
we can consider its image measureltiir).

Without restriction of generality le be connected. Choose a sectipand an open
neighborhood of the formM, B) of y (whereB is a neighborhood of the image pf such
that 0< u(M, B) < oo and such that the line bundiés trivial over (M, B). This exists
because of local finiteness and as every open set in the compact-open topology contains
a ball with respect to the metric defined in Eij). Now pick a trivializing neighborhood
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U C M of = with compact closur&. Then via the trivialization we have }(U) = U x F
where the induced symplectic form on this product depends as well on the footpaint in
as on the footpoint it. For everyu € U we choose an open neighborhood/¢f) which

has a Darboux trivialization, i.e. a diffeomorphism mapping the neighborhood to an open
set in the standard symplectic spa# . Because of compactness@fone can consider

this neighborhood as one and the same subseR8t with smoothly varying symplectic
structure. Then it is easy to show that one can choose the Darboux trivialization as well
smoothly depending on the footpoimte U using the following lemma:

Lemma 5 (smooth Darboux coordinateg)t U be a compact manifold (with or without
boundary), let w © P — U be a symplectic fibre bundle, then for every section y of m there
is a neighborhood V of y(U) which is symplectomorphic to U x V, where V is an open
set in R?" with its standard symplectic structure. Under this symplectomorphism, y(U)
corresponds to U x {0}.

Proof (Proof of the lemma). First note that the notion of symplectomorphism is not quite
correct here as the form is defined for vector fields along the fibre and is degenerate when
extended by zero on the whole tangent space.dfake a tubular neighborhod@of the

image of the sectiop. Then consider the proof of existence of Darboux coordinates as given
in [7], pp- 10-11. All constructions used there depend smoothly on the given symplectic
form, except the choice of the one-foimAs dx is prescribed and &Bis fibrewise simply-
connected, the only freedom we have owet U is adding the differential of a function
onz—i(u) N T, i.e. replacing. — A + df, with f vanishing at zero without restriction of
generality. So for ag with dig = w — wg we define,

A= { o +df: £(0)= 0}

which is an affine subspace af(z—1(u) N T). Then define an arbitrary Riemannian metric
g on T and choose. € A such that it minimizes the functiond&l)) = fn—l(u)mr g(x, A).
This is a convex functional and hence fixes the choic&.d&s all constructions depend
smoothly on the basepoint, so does the resulting diffeomorphism onto open &5 in
containing 0. O

Therefore, the restrictiom| -1,y of the fibre bundler is isomorphic to a trivial bundle
U x V — U via an isomorphism which preserves the symplectic structure. Moreover, we
can assume thdf andV are simply connected. Then Iy the symplectic fornw is exact,
w = dg for a one-forny, and so for® := 6 we have:

do=dbd=dh =& =,
thus,z 1@ is the connection one-form with respect to this trivialization in the conventions

of the Woodhouse booK¥4], pp. 155-162, and 265-269). Therefore, by using the trivial
derivative in this trivialization we can write:

Q(NW) == —ihX y(y) — O(Xp)¥ + fY
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Thus, restricted to the trivializing neighborhood the quantum operators in geometric
guantization are a sum of multiplication operators and a constant multiple of the trivial
derivation along a Hamiltonian vector field;. Therefore, the requirement of Hermiticity
is equivalent to Hermiticity o ;. If X ; has a flow, this is equivalent te Flef =:§,to

be a unitary operator ifi%(1.) because the flow of 1 is its exponential in the Hilbert space
Hom(L?(), L*(w)) = L3(1) ® L*(1)*.
Now,

(fg) = /F( )f(y)g(y) du(y),

(S, 18) = /r oy T DS () du) = /r ) TP AL ) 0)

and unitarity ofS; is equivalent to the invariance gfunder the flow of Hamiltonian vector
fields, @ = . Thus Hermiticity is equivalent to the statement that the Lie derivative of
the measure along Hamiltonian vector fields of functions on the space of sections vanishes.
We take functions of the forrr}f wherefis a compactly supported function on the total
space of the bundle. Their Hamiltonian vector fiekis = X ; of course possess a local

flow (here X ; are vertical vector fields by definition). Thiioposition 3is implied by
Proposition 4vhich we are going to prove now.

From the original measurg on I'%(r) we want to construct a finite measuysé on
f‘O(T['Vﬂn*l(U))' This is done by the following definition: choose a sequence of compact
setsk; C K;y1 C M whose unionig/, then (M, B) = ;cn(Ki, B) € B(r°(r)). Thus, for
A € B(I'(z|y)) we can define:

W'(A) i= w(AN (M, B))

whereA := {y € T%(x) : y|y € A} which is a set in the Borel algebra as restriction is a
continuous operation in the compact-open topology. It is easily showpnthga measure.

Now for a dense sequence of poiptse V defineii,, afinite sigma-subadditive function
on the open subsets &f* by:

Bn(Ag x - x Ay) i= ! (ﬂ({Pi}, Ai))
i=1

which can be extended to a finite and outer regular meagyren V" by u,(A) :=
inf{i,(W)|A C Wopen (first, this gives only an outer measure which can then be shown
to be a Borel measure by use of Caratheodory’s CriteriofiSHf.

Atthis point, one would like to use transitivity of Hamiltonian flowswh Unfortunately,
this transitivity does not hold ol” as a whole, as e.g. a point on the diagomal (-, v)
cannot be mapped outside the diagonal by a flow of the rsan H x - - - x H. Therefore,
we consideV”, while itself a manifold, as stratified by partitions{df - - - , n} in a natural
way: if we have coordinatesy, - - - v, v; € V, the stratum corresponding to the partition
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{G1, -+ igay)s -+ (@], -+, i{())} (whereJ is the number of the blocks) is the set:
n T= e e s — . DY . = .. .
(w2, o) eV |v’} - vll}(l)’ Gt vl/{(l)}'

Now, we use a fact about Hamiltonian vector fields. A result of Bootlibly [8], The-
orem 6.4., p. 27) assures that for a symplectic manif6ldoj, the compactly supported
flows of symplectic vector fields a&f-transitive, i.e. for any 2-tuple of points inS, say
(P, -+, Pnsqas -+ -, qn), With p; # pj,g; # q;fori # j, we can find a symplectomorphic
flow mappingp; to ¢; for it all i. On simply-connected manifolds these flows are generated
by Hamiltonian vector fields (cf8], Theorem 6.3, p. 26).

The N-transitivity of Hamiltonian flowsH on V implies the transitivity of flows of the
form H x --- x H on every stratum o¥/”. On every stratum there is a Lebesgue measure
invariant as well under these flows. We want to show that on every styatusra multiple of
the Lebesgue measure of this stratum. This will be a very consequence from the following:

Lemma 6. Let V be an open subset in R?" with its standard metric and symplectic form.
Let v be an outer-regular, finite measure on an open subset Y = Uy x - - - x Uy of (R¥")K
(with the scalar product g = n1gy, ® nagu, ® - - - ® nigu, and the U; are open subsets of
V) with v(S) = 0 for every (2nk — 1)-sphere S in Y with radius smaller than a pointwise
bound R, L the Lebesgue measure on Y, let both v and L be invariant under the transitive
action of diffeomorphisms of the form H x H --- x H where H is a Hamiltonian flow on
V. Then v is a multiple of L.

Proof. Pick an open subsét’ c Y with compact closur&”’ C Y. First we show thar
is v-continuous ort’. As v is assumed to be outer-regular, the assumption£hatnot
v-continuous implies the existence of a sequeWgef open subsets with:

LWn)

p(Wp) i= V(W) .

Now to each,, we can apply Vitali's Covering Theorerfil(L]). For every > 0, thereis a
countable disjoint family of Euclidean balb; of radius< e in Ywith L(Y \ |J;cy Bi) = 0.
Now assume thap(A) > L and that there is a countable disjoint famidy, C A with
L(A\ Ujen An) = 0. If there were nad; with p(A;) > L we would have

L(A) =L (U A,»> => L(A) <L) v(A)=Lv (U A,-) < Lv(A)

whichisin contradiction to the assumptipfd) > L. Therefore, thereis afy; with p(A;) >
L.

Now setB(m) := W,, and choose with the Vitali step above inductively for &ng N
balls BX with radius< £ which are contained in each other and witB*) > m, Vk e N.
Then consider the diagonal sequeBgze= B"(n). Itis a sequence of balls which converge
to a pointp € Y/ C Y becausel’’ is compact and as the radii go to zero. Now use the
transitivity to get such a sequence of converging balls for every other painp of Y.
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Take a magG > H : p — q. For everyn € N considerd ~1(B1(g)) which contains a ball

B, with p(B,,) > n. ThenH(B,) is in general not a ball itself but contains a second Bl
(via the Vitali step above) which hagB;l) > n and for which the Euclidean distancego
satisfies df, B7) < 1.

As neitherv nor L feel sufficiently small {— 1)-spheresp(p, r) := p(B,(p)) is a con-
tinuous function inY x [0, 1], therefore for every poing € Y there is a sequence of balls
B;(n)(q) around g with ,o(B;(”)(q)) — 00.

Now pick some open sdtin Y’ with p(A) < co. Choose som& > p(A)N whereN is
the constant depending only of the dimensiorYafi the Besikovitch lemma below. Then
for all x € A there is ar(x) > 0, such thaB,(,)(x) C A and

‘C(Br(x)(x)) > KV(Br(x)(x))

andA = J,4 Br(x)(x). The Besikovitch Covering Lemm#5() assures that this contains
N = N(dim(Y)) families of disjoint subcollections which together cover the wholeiset

N .
A=/ UBr;(x;).

i=1 j

Thus, there is ansuch that:

THA) = 37 (B ) = K D LGB, () = KE(A)
J

J

thus we havep(A) > N~1K which is a contradiction as we chog€A)N < K in the be-
ginning (recall thatv does only depend on the dimensiont®}. ThereforeL is continuous
with respect ta.

As v is sigma-finite,£ has the form£(A) = [, fdv for a measurable functiorf :
Y’ — [0, oo]. We want to use the concept of approximate continuitfsBf to show thaftis
constant. First note that ags a Radon measure we know thraélmost everywhere we have:

pp(R) := p(Br(p)) = fdv— f(p)

v(Br(P)) JBr(p)

for R — 0. Pick suchapoint. Then construct Hamiltonian flows that mago ¢; and which
are isometric translations in small neighborhob@s p;. This gives an element i which
mapsp to ¢ and which is an isometry in a small neighborhoog cfherefore atvery point
of Y the limit of p(R) is the same. We conclude by the Besikovitch argument aboté.

We want to apply the lemma above to a straturivf This is isometric td/* with g\« =
nigy ®nagy ® - -- ® nigy with Zle n; = n. And this in turn is isometric ta11V x
naV x --- x nyV as subset of Euclided®**. Recall that any open subset of this stratum is
an opensubsetimV x naV x --- x n; V disjoint from the fat diagonah which consists
of all points where two of the coordinates are identical. Hence, it remains to show that:
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Lemma 7. Let v be a measure on an open subset of n1V x naV x --- x niV disjoint from
the fat diagonal A and invariant under the k-fold product of the action of Hamiltonian flows
on V. Then sufficiently small spheres in n1V x n2V x --- x n;V (as subset of Euclidean
R™) are v-null sets.

Proof. Given a pointp = (p1, - - -, px), takeR > 0 with Sop(p) N A = @, i.e. Bor(pi) N
Bor(pj) =¥ fori # j. Now for every points = (sq, - - -, s¢) of Soz(p) choose a ball with
radiusr < ﬁR arounds. We will consider the pieceE(s) cut out by these balls on the
sphere7'(s) := B.(s) N Sr(p) . For each such piece we will construct a Hamiltonian vector
field X y on V for which XJX," generates infinitely many disjoint copies®fs) violating the
finite measure condition if we assume that the piece has nonzero measure. Given that it has
zero measure we cover the whole sphere with finitely many of these pieces and get that
the sphere itself has zero measure. Nowlée the radial vector field with respect tg.

As s € Sg(p), we know thats; € Br(p;) Vj. Pick jo with pj, & B,(sj,). Asr < ﬁR,
there has to be suchja. Set the functiory to be constructed equal to zeroWin\ Bz(p ;).

We want the Hamiltonian vector fiell ; to increase the distance g in the smaller ball

B, (sj,), i.e. to flow outwardly. At the same time, for sake of integrability of the gradient
vector field we want the gradient 6fo point into radially outward direction as well. The
almost complex structuréis at each point a full-rank map of the tangent space without
an eigenvector, thus without an invariant< 1)-dimensional subspace defines at every
point ¢ an allowed halfspacé in the tangent spacg, B with a nonempty intersection

H N J~1H (as otherwise there would be a  1)-dimensional invariant subspace). As
H N J~1H depends smoothly on the footpoint, there is a smooth vector fieR} (sy,)
contained pointwisely in this subspace. Bs ;) is simply connected, the vector field (as
pointing away fromp; in B,(sj,)) is the gradient of a functiofiin B,(s;,) which can be
extended arbitrarily, but with support Bir(p;,), to all of V. So we have a function whose
Hamiltonian flow F; increases the distance to= (p1, - - -, px) in the chosen neighbor-
hood ofs. Therefore the images @f(s) underF; are all disjoint in a small neighborhood,

t €0, €]

Fiy(s1) # Fi(s2)

because the opposite would mean that the orbits; @Gfnd s> coincide (asF; is a local
diffeomorphism). Thus, we have infinitely many disjoint copies7gf) with the same
measure, therefor&(s) has to be a zero set which implies that the whole sphere does,
because of its compactness(]

Now, we apply the lemmata above to every stratumv8fand to the stratum-wise
transitive flows of the fomFl}(; for somei € N and some Hamiltonian vector fields;.
If we use the lemmata above for every stratunVéf we get that the measuyg, is of the
form:
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with P;; being a measure on thgh stratum and of the form:

Pij(A) = Z cL(pr(Ba(k))(A)), L(pr(Ba(k))(A)), - - -, L(pr(B;(k))(A))
keP&

where the sum is over partitiortsof {1, - - -, i} into j blocks By (k), - - -, Bj(k), cx being
some nonnegative coefficients. The first observation is that for B getV:

wi@N =3 S e | cay 3)

i \keP
so we defingP;j| := >, . cx. Then we consider the two-dimensional pattern of| g,
J
each being the element in ti¢h row andj-th column:

%llljz Z
CT

|P31] |P32| |P33| O

1 1]

| P1| | Pa2| | P43l | Paal

R
e

0O 0 O

Then it is obvious that the elements of the first column decrease monotonously with
while the elements in the other columns tend to zeroi fex oo for fixed j because the
values converge to the measure of the set of maps whose image congilffeoént points
which is empty becausH is connected.

We want to show thatPy1|L(V) = upu(V*M) for all M € N. The trivial part is
| Pyl £(V) < uar (VM) (cf. Eq. (3)), the nontrivial part is| Py1| - £(V) > uau(V>M).

We considelC C V with:

£V) _

2(0) =D>1

Now given a5 > 0, we take & such thatu;(C*') — u(M, C)| < & for all i > k which
exists becausg; (C*') — (M, C) as this holds for all finite Borel measures6¥U, V).
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Then assume that there is 8n- i that
|Ps1]L(C) < us(C*5) — 45
Then for allN > §,
|Py1]L£(C) < pun(C*N) — 26.

Now let w.r.0.g. beC < 1 and sey(B) 1= > °,(L(B)) for a setB.
Given ann € N, chooseZ(n) € N such that

| Pn2l, | Pnal, -+ -5 [PNnl < forall N > Z(n).

)
¥(C)
This exists because of convergence of the columns in the diagram above. If we insert
this estimate into the E¢3), we get

N
un(CN) < IPylL(C) + 8+ D IPnl(L(C))
i=n+1

and thereforé"} ., | Pni|(L(C)) = 6, and

L(V)

N
n+1 § . i n

i=n+1

un (V") = Z |PRil(L(V)) = (=

i=n+1

and by choice of a largewe can produce a contradictionag (V") — u((U, V)) as this
holds for all finite Borel measures tiP(U V). Therefore|Py1| = “(g(“)/ forall M, i.e.

the measure is concentrated on the first column which in the limit represents the constant
maps. Therefore: is an image measurB, o of a measurep on V under the canonical
embeddingP : V< CO(U, V) whose image is the set of constant maps(tee could
again applyLemma 6to prove that it can only be a multiple of the Lebesgue measure). So
we have shown that fa£*° (U, V), at most the measure = P, p (a measure which only
feels the constant maps) can sati&fy(u) = w for any smooth functiod’onU x V. Now

we choose an arbitrary smooth functiBron U x V with compact support in U x V and
consider the Hamiltonian vector fieklz. Under its flow no constant map will be mapped
to a constant map, and we have a contradictionl

To circumvent the problem described by the proposition above, one could think about
several loopholes for constructing appropriate measures: the choice of a polarization, of a
linear functional instead of a Borel measure, or of a field theory where the space of initial
data is so restricted that it does not allow for M#ransitive symmetry of the measure,
which happens very likely in the case of many gauge theories.
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