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Abstract

In this article, it is shown that for the standard symplectic form on the space of compactly supported
sections of a symplectic fibre bundle, there is no locally-finite Borel measure which is preserved by
the Hamiltonian flows of even a quite restricted set of functions on this space. As this means that some
of the operators arising in geometric quantization associated to classical observables would not be
Hermitean, the result suggests that one should consider quotients by gauge groups as classical phase
spaces to avoid this problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and statement of the results

One of the basic features of Hamiltonian flows on finite-dimensional symplectic man-
ifolds is that they preserve the symplectic formω and hence the natural volume form
ω ∧ ω ∧ · · · ∧ ω. Now one could try to obtain a similar result on the phase space of a field
theory which is often a Frechet manifold of sections of a fibre bundle. Sometimes this fibre
bundle is a symplectic fibre bundle, e.g. in the case that one has a Cauchy correspondence
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of first order, i.e. a Frechet diffeomorphism between the space of initial values up to the
first derivatives and the space of classical solutions. Then one can construct an associated
symplectic form on the space�(π) of sections of the symplectic fibre bundleπ (which is
defined below) and ask whether there is a nonzero locally finite Borel measure on�(π) that
is preserved by the group of Hamiltonian flows on�(π). We will show that the answer is
no. This implies that in this case, the operators corresponding to quantum observables in
geometric quantization are not Hermitean.

We will first describe shortly the framework of geometric quantization. Details can be
found in[9].

Geometric quantization (a good overview of which is provided by the books of Wood-
house[14] and Sniatycki[13]) is basically a replacement of the abstract Hilbert space of
some quantum theory by the space of smooth sections of a complex line bundlel over the
space (�(π)) of classical solutions which is in general a Frechet manifold of sections of a
fibre bundleπ : E → M. Here we assume for later use thatM is equipped with a volume
form dvolM . The Hilbert space operators are then replaced by some linear Hermitean first
order differential operators in�(l). Thus on the level of observables, geometric quantization
is a mapping:

Q : C∞(�(π),R) ⊃ S → End(�(l)), Q(f )(ψ) := −i�∇Xf ψ + fψ

wherel is a Hermitean complex line bundle on�(π) with a Hermitean connection∇ whose
curvature is a (weakly) symplectic two-form�−1Ω defining Hamiltonian vector fieldsXf
for some functionsf byΩ(Xf , ·) = df (·), andS is the subset of all functions with a Hamil-
tonian vector field (thusS is closed under the Poisson bracket). By End(�(l)) we mean
the set of linear operators acting on�(l). The operators obtained are first order differential
operators, i.e. they are not only elements of End(�(l)), but also elements of End(j1l), where
j1l : J1l → �(π) is the first jet bundle ofl. A condition ensuring the existence of the line
bundle above is given by the following theorem (for the proof cf.[14]).

Theorem 1. Let M be a (possibly infinite-dimensional Frechet) manifold carrying a
(weakly) symplectic form Ω. Then there is a Hermitean line bundle with a connection of
curvature �−1Ω if and only if the cohomology class of Ω in H2(M,R) lies in H2(M,Z).

We will call a manifoldprequantizable if it satisfies this condition.
The mapQ satisfies Dirac’s famous axiom system for correspondences between classical

and quantum observables ([3]):

1. The mapf → Q(f ) isR-linear,
2. Forf constant,Q(f ) is the corresponding multiplication operator,
3. The mapQ is an algebra homomorphism, more precisely, the following diagram com-

mutes:
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where{·, ·} is the Poisson bracket with respect to the symplectic formΩ, and [·, ·] means
the commutator of linear operators.

In addition, we need a measureµ on the classical phase space for which all quantum
operators are Hermitean with respect to theL2-norm if restricted to smooth square-
integrable sections ofl (as in generalµ need not to be finite). Recall that in the light of the
Kopenhagen interpretation Hermiticity is important because only in that case all expectation
values are real. Now, we will see that there is no such measure. This will be done in
Proposition 3.

Let us introduce some non-standard notation. Forn ≤ ∞, let �̃n(π) denote the space
of all n times continuously differentiable sections of the fibre bundleπ : E → M, i.e.
�̃n(π) := {γ ∈ Cn(M,E) : π ◦ γ = 1M}. Let�n(π) be the corresponding spaces of sections
of compact support which in the case of a fibre bundle means that the section coincides
with a fixed reference section outside a compact set: fixγ0 ∈ �̃n(π), then:

�n(π) = {s ∈ �̃n(π)|∃ compactC ⊂ M with s|M\C = γ0|M\C}.

The spaces̃�0(π) and�0(π) can be equipped with the metric of uniform convergence on
compact subspaces, i.e.

d(γ1, γ2) :=
∑
n∈N

min

(
1

2n
,max
x∈Kn

(d0(γ1(x) − γ2(x)))

)
. (1)

for an increasing sequenceKn of compact sets with
⋃
n Kn = M, whered0 is the Riemannian

distance (with respect to an arbitrary Riemannian metric onE) in the submanifoldπ−1(x).
This generates thecompact-open topology τ on�0(π) a subbasis of which is formed by all
sets (C,O) := {γ ∈ �(π) : γ(C) ⊂ O} of sections that map a fixed compact setC ⊂ M into
a fixed open set inE, analogously for spaces of higher differentiability (note that although
this metric and topology is well-defined for general manifoldsM, �n(π) will be a Frechet
manifold if and only ifM is compact!). Setσπ := σ(τ), where for a family of subsetsK
the termσ(K) means the smallestσ-algebra containingK. By a Borel measure we mean a
measure onσπ.

Finally, note that σπ = σ({pr{m}|m ∈ M}) = {pr{m}(B)|m ∈ M,B ∈ B(π−1({m}))},
wherepr{m} := evm : �(π) → π−1({m}), the evaluation map atp, andB(π−1({m})) is the
Borel-σ-algebra ofπ−1({m}).

Thesymplectic form used here is quite common in geometric quantization of field theories
and goes probably back to Chernoff and Marsden ([2], [10], [4] for the case of a trivial bundle,
[14] and[9] for an overview).

A crucial tool of the construction is the identification of a tangent vectorV respectively
the value of a vector fieldV on �̃k+1(π) at a fixed sectionγ with a vector fieldalong γ, i.e.
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a section ofγ∗T vE:

ˆ : T |γ �̃k+1(π) → �̃k(γ∗T vE), V̂ |γ (p) := LV evp

or equivalently,

V̂ |γ : p �→ ∂t(γt(p)),

wherep ∈ N, γt a curve representingV (γ). This means, we fix a pointp ∈ M and note
the direction in which it is moved infinitesimally by the family of mapsγt . If we start
with a tangent vectorV at �̃k(π) tangent to the submanifold�k(π) of compactly sup-
ported sections, then̂V |γ has also compact support because

⋃
t∈[−1,1] γt has compact

support.
The definition of the symplectic form on�1(π) is relatively simple. To every (p,0)-

tensor fieldA onE we can associate a (p,0)-tensor fieldÃ ∈ �((T ∗M)⊗p) on�1(π) by the
prescription:

Ã(V1, · · · , Vp)(γ) :=
∫
M

A(V̂ γ1 , · · · , V̂ γp ) dvolM

where eacĥVγi is the corresponding vector field alongγ. Then, by means of an arbitrary
auxiliary Riemannian metricg on the total spaceE, to every (p, q)-tensor fieldA on E we
can associate a (p, q)-tensor fieldÃ on�1(π) by the prescription

g̃(Ã(V1, · · · , Vp), Vp+1 ⊗ · · · ⊗ Vp+q)(γ)

:=
∫
M

g(A(V̂ γ1 , · · · , V̂ γp ), V̂ γp+1 ⊗ · · · V̂ γp+q) dvolM

This construction shares many good properties such as naturality under isometric embed-
dings (for details cf.[9]). Moreover, it induces a chain map as follows:

Theorem 2 ([12],[9]). The map˜ : 
∗(E) → 
∗(�(π)) is a chain map, i.e. d ◦ ˜ = ˜ ◦ d.
Moreover the kernel of ˜are exactly the forms which are zero along the fibres of π.

Now we assumeπ to be a symplectic fibre bundle, where the fibre manifold carries a
symplectic formω smoothly depending on the base point inM. Then�1(π) is equipped
with the two-formω̃ which assigns to any two tangent vectorsX, Y at a sectionγ (with
X̂, Ŷ the associated vector fields alongγ) the number:

Ω(X, Y ) := ω̃(X, Y ) =
∫
M

ω(X̂, Ŷ ) dvolM, (2)

and an almost immediate consequence from the theorem above is thatΩ is a (weakly) sym-
plectic form on�1(π). For further details of the constructions above cf.[9]. This procedure
is motivated by the fact that for a field theory on a bundleτ : A → N over a globally hy-
perbolic Lorentzian manifoldN, one can often find a Cauchy correspondence of first order,
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i.e. a Frechet diffeomorphism between the classical solutions and the values of the field up
to first order of derivatives on a Cauchy surfaceM with normal vector fieldν, i.e. classical
solutions can be identified with sections of the bundleπ = ν∗ dτ : TA → M. OftenA car-
ries a bilinear form by whichTA can be identified withT ∗A, hence we have sections of a
symplectic fibre bundle.

Now we can state the results of this article:

Proposition 3. Let π : E → M be a symplectic fibre bundle. We equip �n(π) with the
weakly symplectic structure Ω defined by Eq. (2). We suppose (�n(π),Ω) to be prequan-
tizable. Then there is no nonzero locally finite Borel measure µ on �k(π), 1 ≤ k ≤ ∞ as
subset of �l(π), 0 ≤ l ≤ k such that all operators Q(f̃ ), where f is a compactly supported
function on E, are Hermitean.

The proposition will be proved as corollary of the following proposition:

Proposition 4. Let π : E → M be a symplectic fibre bundle. We equip �n(π) with the
weakly symplectic structure defined by Eq. (2). There is no nonzero locally finite Borel
measureµ on�k(π) as subset of�l(π), l ≤ k ≤ ∞ which is invariant under the Hamiltonian
flows of its smooth L2-functions of the form f̃ , where f is a compactly supported smooth
function on E.

2. Proof of the propositions

The strategy of the proof is the following: we first pick a trivial neighborhoodU of the
fibre bundle and consider the induced measure on sections over this neighborhood which we
consider in a trivialization adjusted to the symplectic structure in an open setV ⊂ π−1(U)
(which then can be understood asU times a subset of EuclideanR2n with its standard
symplectic form) so that in this trivializatioñ�1(π|V ) = C1(U,V ). If we try to construct a
measure onC1(U,V ) the first idea would be to take an image measure under the canonical
embeddingP : V ↪→ C1(U,V ) whose image is the set of point maps which we denote by
P. On the elements of the subbasis it takes the formµ(C,O) = L(O) whereL denotes
the Lebesgue volume inV, and for every element (C,O) of the subbasis of the compact-
open topology defined above. Then we show that in this trivialization the measure would
have to be an element ofim(P). But if we change locally the trivialization to get another
adjusted trivialization, we get another mapP and another measure. This produces the
contradiction.

Without restriction of generality we can consider the casel = 0, k = ∞. This is because
we have continuous embeddings of�i(π) → �0(π) such that for every measure on�i(π)
we can consider its image measure on�0(π).

Without restriction of generality letM be connected. Choose a sectionγ and an open
neighborhood of the form (M,B) of γ (whereB is a neighborhood of the image ofγ) such
that 0< µ(M,B) < ∞ and such that the line bundlel is trivial over (M,B). This exists
because of local finiteness and as every open set in the compact-open topology contains
a ball with respect to the metric defined in Eq.(1). Now pick a trivializing neighborhood
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U ⊂ M of π with compact closureU. Then via the trivialization we haveπ−1(U) = U × F

where the induced symplectic form on this product depends as well on the footpoint inU
as on the footpoint inF. For everyu ∈ U we choose an open neighborhood ofγ(u) which
has a Darboux trivialization, i.e. a diffeomorphism mapping the neighborhood to an open
set in the standard symplectic spaceR2n. Because of compactness ofU one can consider
this neighborhoodN as one and the same subset ofR2n with smoothly varying symplectic
structure. Then it is easy to show that one can choose the Darboux trivialization as well
smoothly depending on the footpointu ∈ U using the following lemma:

Lemma 5 (smooth Darboux coordinates).Let U be a compact manifold (with or without
boundary), let π : P → U be a symplectic fibre bundle, then for every section γ of π there
is a neighborhood V of γ(U) which is symplectomorphic to U × V , where V is an open
set in R2n with its standard symplectic structure. Under this symplectomorphism, γ(U)
corresponds to U × {0}.
Proof (Proof of the lemma). First note that the notion of symplectomorphism is not quite
correct here as the form is defined for vector fields along the fibre and is degenerate when
extended by zero on the whole tangent space ofP. Take a tubular neighborhoodT of the
image of the sectionγ. Then consider the proof of existence of Darboux coordinates as given
in [7], pp. 10–11. All constructions used there depend smoothly on the given symplectic
form, except the choice of the one-formλ. As dλ is prescribed and asT is fibrewise simply-
connected, the only freedom we have overu ∈ U is adding the differential of a function
onπ−1(u) ∩ T , i.e. replacingλ → λ+ df , with f vanishing at zero without restriction of
generality. So for aλ0 with dλ0 = ω − ω0 we define,

A := {λ0 + df : f (0) = 0}

which is an affine subspace of
1(π−1(u) ∩ T ). Then define an arbitrary Riemannian metric
g on T and chooseλ ∈ A such that it minimizes the functionalS(λ) = ∫

π−1(u)∩T g(λ, λ).
This is a convex functional and hence fixes the choice ofλ. As all constructions depend
smoothly on the basepoint, so does the resulting diffeomorphism onto open sets inR

2n

containing 0. �

Therefore, the restrictionπ|V∩π−1(U) of the fibre bundleπ is isomorphic to a trivial bundle
U × V → U via an isomorphism which preserves the symplectic structure. Moreover, we
can assume thatU andV are simply connected. Then inV, the symplectic formω is exact,
ω = dθ for a one-formθ, and so forΘ := θ̃ we have:

dΘ = dθ̃ = d̃θ = ω̃ = Ω,

thus,�−1� is the connection one-form with respect to this trivialization in the conventions
of the Woodhouse book ([14], pp. 155–162, and 265–269). Therefore, by using the trivial
derivative in this trivialization we can write:

Q(f )(ψ) := −i�Xf (ψ) −�(Xf )ψ + fψ.
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Thus, restricted to the trivializing neighborhood the quantum operators in geometric
quantization are a sum of multiplication operators and a constant multiple of the trivial
derivation along a Hamiltonian vector fieldXf . Therefore, the requirement of Hermiticity
is equivalent to Hermiticity ofXf . If Xf has a flow, this is equivalent to· ◦ FltXf =: St to

be a unitary operator inL2(µ) because the flow ofXf is its exponential in the Hilbert space
Hom(L2(µ), L2(µ)) = L2(µ) ⊗ L2(µ)∗.

Now,

〈f, g〉 =
∫
�(π)

f (γ)g(γ) dµ(γ),

〈Stf, Stg〉 =
∫
�(π)

f (FltXf (γ))g(FltXf (γ)) dµ(γ) =
∫
�(π)

f (γ)g(γ) d((FltXf )∗µ)(γ)

and unitarity ofSt is equivalent to the invariance ofµ under the flow of Hamiltonian vector
fields,Φ∗

t µ = µ. Thus Hermiticity is equivalent to the statement that the Lie derivative of
the measure along Hamiltonian vector fields of functions on the space of sections vanishes.
We take functions of the form̃f wheref is a compactly supported function on the total
space of the bundle. Their Hamiltonian vector fieldsXf̃ = X̃f of course possess a local
flow (hereXf are vertical vector fields by definition). ThusProposition 3is implied by
Proposition 4which we are going to prove now.

From the original measureµ on �0(π) we want to construct a finite measureµ′ on
�̃0(π|V∩π−1(U)). This is done by the following definition: choose a sequence of compact
setsKi ⊂ Ki+1 ⊂ M whose union isM, then (M,B) = ⋂i∈N(Ki, B) ∈ B(�0(π)). Thus, for
A ∈ B(�̃0(π|V )) we can define:

µ′(A) := µ(Ã ∩ (M,B))

whereÃ := {γ ∈ �0(π) : γ|U ∈ A} which is a set in the Borel algebra as restriction is a
continuous operation in the compact-open topology. It is easily shown thatµ′ is a measure.

Now for a dense sequence of pointspi ∈ V defineµ̃n, a finite sigma-subadditive function
on the open subsets ofVn by:

µ̃n(A1 × · · · × An) := µ′
(

n⋂
i=1

({pi}, Ai)
)

which can be extended to a finite and outer regular measureµn on Vn by µn(A) :=
inf {µ̃n(W)|A ⊂ Wopen} (first, this gives only an outer measure which can then be shown
to be a Borel measure by use of Caratheodory’s Criterion, cf.[5]).

At this point, one would like to use transitivity of Hamiltonian flows onVn. Unfortunately,
this transitivity does not hold onVn as a whole, as e.g. a point on the diagonal (v, · · · , v)
cannot be mapped outside the diagonal by a flow of the formH ×H × · · · ×H . Therefore,
we considerVn, while itself a manifold, as stratified by partitions of{1, · · · , n} in a natural
way: if we have coordinatesv1, · · · vn, vi ∈ V , the stratum corresponding to the partition
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{(i11, · · · , i1k(1)), · · · , (iJ1, · · · , iJk(J))} (whereJ is the number of the blocks) is the set:

{(v1, · · · , vn) ∈ Vn|vi11 = · · · = vi1
k(1)
, · · · , viJ1 = · · · = viJ

k(J)
}.

Now, we use a fact about Hamiltonian vector fields. A result of Boothby ([1], [8], The-
orem 6.4., p. 27) assures that for a symplectic manifold (S, ω), the compactly supported
flows of symplectic vector fields actN-transitive, i.e. for any 2n-tuple of points inS, say
(p1, · · · , pn, q1, · · · , qn), withpi �= pj, qi �= qj for i �= j, we can find a symplectomorphic
flow mappingpi to qi for it all i. On simply-connected manifolds these flows are generated
by Hamiltonian vector fields (cf.[8], Theorem 6.3, p. 26).

TheN-transitivity of Hamiltonian flowsH on V implies the transitivity of flows of the
formH × · · · ×H on every stratum ofVn. On every stratum there is a Lebesgue measure
invariant as well under these flows. We want to show that on every stratumµn is a multiple of
the Lebesgue measure of this stratum. This will be a very consequence from the following:

Lemma 6. Let V be an open subset in R2n with its standard metric and symplectic form.
Let ν be an outer-regular, finite measure on an open subset Y = U1 × · · · × Uk of (R2n)k

(with the scalar product g = n1gU1 ⊕ n2gU2 ⊕ · · · ⊕ nkgUk and the Ui are open subsets of
V) with ν(S) = 0 for every (2nk − 1)-sphere S in Y with radius smaller than a pointwise
bound R, L the Lebesgue measure on Y, let both ν and L be invariant under the transitive
action of diffeomorphisms of the form H ×H · · · ×H where H is a Hamiltonian flow on
V. Then ν is a multiple of L.

Proof. Pick an open subsetY ′ ⊂ Y with compact closureY ′ ⊂ Y . First we show thatL
is ν-continuous onY ′. As ν is assumed to be outer-regular, the assumption thatL is not
ν-continuous implies the existence of a sequenceWn of open subsets with:

ρ(Wm) := L(Wm)

ν(Wm)
> m.

Now to eachWm we can apply Vitali’s Covering Theorem ([11]). For everyε > 0, there is a
countable disjoint family of Euclidean ballsBi of radius< ε in Y withL(Y \⋃i∈N Bi) = 0.
Now assume thatρ(A) > L and that there is a countable disjoint familyAn ⊂ A with
L(A \⋃i∈NAn) = 0. If there were noAi with ρ(Ai) > L we would have

L(A) = L
(⋃

i

Ai

)
=
∑
i

L(Ai) ≤ L
∑
i

ν(Ai) = Lν

(⋃
i

Ai

)
≤ Lν(A)

which is in contradiction to the assumptionρ(A) > L. Therefore, there is anAi withρ(Ai) >
L.

Now setB0(m) := Wm and choose with the Vitali step above inductively for anyk ∈ N
ballsBk with radius< 1

k
which are contained in each other and withρ(Bk) > m, ∀k ∈ N.

Then consider the diagonal sequenceBn := Bn(n). It is a sequence of balls which converge
to a pointp ∈ Y ′ ⊂ Y becauseY ′ is compact and as the radii go to zero. Now use the
transitivity to get such a sequence of converging balls for every other pointq �= p of Y .
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Take a mapG � H : p �→ q. For everyn ∈ N considerH−1(B 1
n
(q)) which contains a ball

Bn with ρ(Bn) > n. ThenH(Bn) is in general not a ball itself but contains a second ballB
q
n

(via the Vitali step above) which hasρ(Bqn) > n and for which the Euclidean distance toq
satisfies d(q, Bqn) < 1

n
.

As neitherν norL feel sufficiently small (l− 1)-spheres,̃ρ(p, r) := ρ(Br(p)) is a con-
tinuous function inY × [0,1], therefore for every pointq ∈ Y there is a sequence of balls
B′
r(n)(q) around q with ρ(B′

r(n)(q)) → ∞.
Now pick some open setA in Y ′ with ρ(A) < ∞. Choose someK > ρ(A)N whereN is

the constant depending only of the dimension ofY in the Besikovitch lemma below. Then
for all x ∈ A there is anr(x) > 0, such thatBr(x)(x) ⊂ A and

L(Br(x)(x)) > Kν(Br(x)(x))

andA = ⋃x∈A Br(x)(x). The Besikovitch Covering Lemma ([5]) assures that this contains
N = N(dim(Y )) families of disjoint subcollections which together cover the whole setA:

A =
N⋃
i=1

⋃̇
j

Bri
j
(xij).

Thus, there is ani such that:

1

N
ν(A) ≤

∑
j

ν(Bri
j
(xij)) ≤ K

∑
j

L(Bri
j
(xij)) ≤ KL(A),

thus we haveρ(A) ≥ N−1K which is a contradiction as we choseρ(A)N < K in the be-
ginning (recall thatN does only depend on the dimension ofY!). ThereforeL is continuous
with respect toν.

As ν is sigma-finite,L has the formL(A) = ∫
A
f dν for a measurable functionf :

Y ′ → [0,∞]. We want to use the concept of approximate continuity, cf[5]), to show thatf is
constant. First note that asν is a Radon measure we know thatν-almost everywhere we have:

ρp(R) := ρ(BR(p)) = 1

ν(BR(p))

∫
BR(p)

f dν → f (p)

forR → 0. Pick such a pointp. Then construct Hamiltonian flows that mappi toqi and which
are isometric translations in small neighborhoodsUi � pi. This gives an element inG which
mapsp to q and which is an isometry in a small neighborhood ofp. Therefore atevery point
of Y the limit of ρ(R) is the same. We conclude by the Besikovitch argument above.�

We want to apply the lemma above to a stratum ofVn. This is isometric toVk with gVk =
n1gV ⊕ n2gV ⊕ · · · ⊕ nkgV with

∑k
i=1 ni = n. And this in turn is isometric ton1V ×

n2V × · · · × nkV as subset of EuclideanRn·k. Recall that any open subset of this stratum is
an open subset inn1V × n2V × · · · × nkV disjoint from the fat diagonal∆ which consists
of all points where two of the coordinates are identical. Hence, it remains to show that:
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Lemma 7. Let ν be a measure on an open subset of n1V × n2V × · · · × nkV disjoint from
the fat diagonal∆ and invariant under the k-fold product of the action of Hamiltonian flows
on V. Then sufficiently small spheres in n1V × n2V × · · · × nkV (as subset of Euclidean
R
nk) are ν-null sets.

Proof. Given a pointp = (p1, · · · , pk), takeR > 0 with S2R(p) ∩∆ = ∅, i.e.B2R(pi) ∩
B2R(pj) = ∅ for i �= j. Now for every points = (s1, · · · , sk) of S2R(p) choose a ball with
radiusr < 1

2
√
n
R arounds. We will consider the piecesT (s) cut out by these balls on the

sphere,T (s) := Br(s) ∩ SR(p) . For each such piece we will construct a Hamiltonian vector
fieldXf onV for whichX×k

f generates infinitely many disjoint copies ofT (s) violating the
finite measure condition if we assume that the piece has nonzero measure. Given that it has
zero measure we cover the whole sphere with finitely many of these pieces and get that
the sphere itself has zero measure. Now letρ be the radial vector field with respect topj.
As s ∈ SR(p), we know thatsj ∈ BR(pj) ∀j. Pick j0 with pj0 /∈ Br(sj0). As r < 1

2
√
n
R,

there has to be such aj0. Set the functionf to be constructed equal to zero inV \ BR(pj0).
We want the Hamiltonian vector fieldXf to increase the distance topj in the smaller ball
Br(sj0), i.e. to flow outwardly. At the same time, for sake of integrability of the gradient
vector field we want the gradient off to point into radially outward direction as well. The
almost complex structureJ is at each point a full-rank map of the tangent space without
an eigenvector, thus without an invariant (n− 1)-dimensional subspace.ρ defines at every
point q an allowed halfspaceH in the tangent spaceTqB with a nonempty intersection
H ∩ J−1H (as otherwise there would be a (n− 1)-dimensional invariant subspace). As
H ∩ J−1H depends smoothly on the footpoint, there is a smooth vector field inBr(sj0)
contained pointwisely in this subspace. AsBr(sj0) is simply connected, the vector field (as
pointing away frompj in Br(sj0)) is the gradient of a functionf in Br(sj0) which can be
extended arbitrarily, but with support inBR(pj0), to all of V. So we have a function whose
Hamiltonian flowFt increases the distance top = (p1, · · · , pk) in the chosen neighbor-
hood ofs. Therefore the images ofT (s) underFt are all disjoint in a small neighborhood,
t ∈ [0, ε]:

Ft1(s1) �= Ft2(s2)

because the opposite would mean that the orbits ofs1 and s2 coincide (asFt is a local
diffeomorphism). Thus, we have infinitely many disjoint copies ofT (s) with the same
measure, thereforeT (s) has to be a zero set which implies that the whole sphere does,
because of its compactness.�

Now, we apply the lemmata above to every stratum ofVn and to the stratum-wise
transitive flows of the formFl×iXf for somei ∈ N and some Hamiltonian vector fieldsXf .
If we use the lemmata above for every stratum ofVn, we get that the measureµn is of the
form:

µi =
i∑

j=1

Pij



O. Müller / Journal of Geometry and Physics 56 (2006) 1029–1041 1039

with Pij being a measure on thej-th stratum and of the form:

Pij(A) :=
∑
k∈Pi

j

ckL(pr(B1(k))(A)),L(pr(B2(k))(A)), · · · ,L(pr(Bj(k))(A))

where the sum is over partitionsk of {1, · · · , i} into j blocksB1(k), · · · , Bj(k), ck being
some nonnegative coefficients. The first observation is that for a setD ⊂ V :

µi(D
×i) =

∑
i


∑
k∈Pi

j

ck


 (L(A))j (3)

so we define|Pij| :=∑k∈Pi
j
ck. Then we consider the two-dimensional pattern of the|Pij|,

each being the element in thei-th row andj-th column:

|P11| 0 0 0�≥ � � �
|P21| |P22| 0 0�≥ � � �
|P31| |P32| |P33| 0 · · ·�≥ � � �
|P41| |P42| |P43| |P44|�≥ � � �
· · · · · · · · · · · ·�i→∞

�i→∞
�i→∞

0 0 0

Then it is obvious that the elements of the first column decrease monotonously withi
while the elements in the other columns tend to zero fori → ∞ for fixed j because the
values converge to the measure of the set of maps whose image consists ofj different points
which is empty becauseM is connected.

We want to show that|PM1|L(V ) = µM(V×M) for all M ∈ N. The trivial part is
|PM1|L(V ) ≤ µM(V×M) (cf. Eq. (3)), the nontrivial part is|PM1| · L(V ) ≥ µM(V×M).
We considerC ⊂ V with:

L(V )

L(C)
= D > 1.

Now given aδ > 0, we take ak such that|µi(C×i) − µ(M,C)| ≤ δ for all i ≥ k which
exists becauseµi(C×i) → µ(M,C) as this holds for all finite Borel measures onC0(U,V ).
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Then assume that there is anS > i that

|PS1|L(C) ≤ µS(C×S) − 4δ.

Then for allN ≥ S,

|PN1|L(C) ≤ µN (C×N ) − 2δ.

Now let w.r.o.g. beL < 1 and sety(B) :=∑∞
i=2(L(B))i for a setB.

Given ann ∈ N, chooseZ(n) ∈ N such that

|PN2|, |PN3|, · · · , |PNn| < δ

y(C)
for all N ≥ Z(n).

This exists because of convergence of the columns in the diagram above. If we insert
this estimate into the Eq.(3), we get

µN (C×N ) ≤ |PN1|L(C) + δ+
N∑

i=n+1

|PNi|(L(C))i

and therefore
∑N
i=n+1 |PNi|(L(C))i ≥ δ, and

µN (V×n) ≥
N∑

i=n+1

|PNi|(L(V ))i ≥ (
L(V )

L(C)
)n+1

N∑
i=n+1

|PNi|(L(C))i ≥ Dnδ

and by choice of a largen we can produce a contradiction asµN (V×N ) → µ((U,V )) as this
holds for all finite Borel measures onC0(U,V ). Therefore,|PM1| = µ((U,V ))

L(V ) for all M, i.e.
the measure is concentrated on the first column which in the limit represents the constant
maps. Thereforeµ is an image measureP∗ρ of a measureρ on V under the canonical
embeddingP : V ↪→ C0(U,V ) whose image is the set of constant maps (toρ we could
again applyLemma 6to prove that it can only be a multiple of the Lebesgue measure). So
we have shown that forC∞(U,V ), at most the measureµ = P∗ρ (a measure which only
feels the constant maps) can satisfyX∗̃

F
(µ) = µ for any smooth functionF onU × V . Now

we choose an arbitrary smooth functionF onU × V with compact support in U × V and
consider the Hamiltonian vector fieldXF̃ . Under its flow no constant map will be mapped
to a constant map, and we have a contradiction.�

To circumvent the problem described by the proposition above, one could think about
several loopholes for constructing appropriate measures: the choice of a polarization, of a
linear functional instead of a Borel measure, or of a field theory where the space of initial
data is so restricted that it does not allow for anN-transitive symmetry of the measure,
which happens very likely in the case of many gauge theories.
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